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Smart Grids Technologies

Exercise

Per-Unit Calculus

1 Organization

This exercise session serves as preparation for Labs 2.1 – 2.3 where you will
work mainly with per-unit quantities. Sec. 2 revises the theory concerning
the per-unit analysis of power systems. Sec. 3 contains some simple exercises
for practicing what you have learnt. You do not have to upload this
report on moodle. A sample solution will be provided so that you can
check your answers.
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2 Theory

2.1 Introduction

A per-unit system is obtained by referring all quantities of a system to
certain base values. Consider a complex quantity sA “ Are ` jAim (i.e.,
Are “ ℜt sAu, Aim “ ℑt sAu). Let Ab P R` be the corresponding base value,
which applies to both the real and the imaginary part. The corresponding
per-unit quantity sa is obtained as follows

sa “
sA

Ab
“

Are ` jAim

Ab
“

Are

Ab
` j

Aim

Ab
(1)

Accordingly, for the absolute value |sa|

|sa| “

b

a2re ` a2im “

d

ˆ

Are

Ab

˙2

`

ˆ

Aim

Ab

˙2

“

b

A2
re ` A2

im

Ab
“

ˇ

ˇ sA
ˇ

ˇ

Ab
(2)

One says that sA is given in absolute units, and sa in relative (or normalized)
units. The base units for different quantities have to be coherent. A set of
base units tAb,k | k P Kuq is coherent if the following holds: if the quantity
Ai (i P K) depends on the other quantities Aj (j P K, j ‰ i) according to a
physical law fi of the form

Ai “ fi ptAj | j P K, j ‰ iuq (3)

the corresponding base units are linked by the same physical law. That is

@i P K : Ab,i “ fi ptAb,j | j P K, j ‰ iuq (4)

In power system analysis, one needs to define base values for voltage, current,
power, and impedance (or admittance). Obviously, these quantities are
not mutually independent. Usually, one chooses base values for power and
voltage, and then computes the remaining ones from these.

2.2 Single-Phase Systems

Consider a single-phase system. Select base values Vb for the voltage and
Ab for the power (i.e., P or Q). The base values for current and impedance
(or admittance) are obtained as follows

Ib “
Ab

Vb
(5)

Zb “
Vb

Ib
“

V 2
b

Ab

ˆ

Yb “
1

Zb
“

Ib
Vb

“
Ab

V 2
b

˙

(6)
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Let sV and sI be the phasors of voltage and current, and sS “ sV sI˚ “ P ` jQ
be the complex power in absolute units at a given point of the grid. The
corresponding per-unit quantities sv, si, and ss “ p`jq are obtained as follows

sv “
sV

Vn
(7)

si “
sI

Ib
(8)

ss “
sS

Ab

ˆ

p “
P

Ab
, q “

Q

Ab

˙

(9)

Let sZ be the impedance in absolute values of an element in the grid. The
corresponding per-unit quantity sz is given by

sz “
sZ

Zb
“ sZ

Ib
Vb

“ sZ
Ab

V 2
b

ˆ

sy “
sY

Yb
“ sY

Vb

Ib
“ sY

V 2
b

Ab

˙

(10)

2.3 Three-Phase Systems

As explained above, in single-phase systems, the base values Ab and Vb

correspond to the power and voltage of one phase. In principle, the base
values can be defined analogously for three-phase systems. However, the
data of three-phase components are typically given in terms of three-phase
power and phase-to-phase voltage. Therefore, one usually chooses Ab as the
three-phase power and Vb as the phase-to-phase voltage. By consequence,
the base values for current and impedance (or admittance) are given by

Ib “
Ab

?
3Vb

(11)

Zb “
V 2
b

Ab

ˆ

Yb “
Ab

V 2
b

˙

(12)

If the three-phase system is perfectly balanced and in a sinusoidal regime of
operation, it can be reduced to an equivalent single-phase system (i.e., the
positive-sequence system). The voltages in this equivalent system are phase-
to-ground voltages. The relation between the phase-to-phase base voltage
Vb and the phase-to-ground base voltage Eb is

Eb “
Vb
?
3

(13)
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n : 1 (ideal)sI 1
1

sI2
sZsc

sY0

sI1

sE2
sE1
1

sE1

Figure 1: Equivalent circuit of a transformer in absolute units.

The values of the phase-to-phase voltage relative to Vb and of the phase-
to-ground voltage relative to Eb in a point of the system are equal. That
is

sv “
sV

Vb
“

?
3 sE

?
3Eb

“
sE

Eb
“ se (14)

2.4 Change of Base

Let sv1, si1, ss1, sz1 and sy1 be values in per unit of the base defined by Ab,1,
Vb,1. Similarly, let sv2, si2, ss2, sz2 and sy2 be the same quantities but with
respect to another base defined by Ab,2, Vb,2. The following identities hold

sv1
sv2

“
sV

Vb,1

ˆ

sV

Vb,2

˙´1

“
Vb,2

Vb,1
(15)

si1
si2

“
sI

Ib,1

ˆ

sI

Ib,2

˙´1

“
Ib,2
Ib,1

“
Ab,2

Ab,1

Vb,1

Vb,2
(16)

ss1
ss2

“
sS

Ab,1

ˆ

sS

Ab,2

˙´1

“
Ab,2

Ab,1
(17)

sz1
sz2

“
sZ

Zb,1

ˆ

sZ

Zb,2

˙´1

“
Zb,2

Zb,1
“

ˆ

Vb,2

Vb,1

˙2 Ab,1

Ab,2
(18)

sy1
sy2

“
sz2
sz1

“

ˆ

Vb,1

Vb,2

˙2 Ab,2

Ab,1
(19)

2.5 Transformer Equivalent Circuit

Fig. 1 depicts the single-phase equivalent circuit of a three-phase transformer
with star configuration on both sides (i.e., on primary and secondary side).
Let Vn,1 and Vn,2 be the nominal voltage on the primary and secondary side
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and n “ Vn,1{Vn,2 the nominal transformer ratio, where

sE1
1 “ n sE2 (20)

sI 1
1 “

1

n
sI2 (21)

sY0 “ G0 ` jB0 is the zero-load admittance referred to the primary side, and
sZsc “ Rsc `jXsc is the short-circuit impedance referred to the primary side.
The transformer is described by the following equations

sE1 “ n sE2 `
sZsc

n
sI2 (22)

sI1 “ sY0 sE2 `
1

n
p1 ` sY0 sZscqsI2 (23)

Fix a base value Ab for the three-phase power, and two base values Vb,1 and
Vb,2 for the phase-to-phase voltage on the primary and secondary side. In
the per-unit system, the electrical parameters are given by

szsc “ sZsc
Ab

V 2
b,1

(24)

sy0 “ sY0
V 2
b,1

Ab
(25)

Accordingly, the transformer equations (22) & (23) become

sv1 “ sE1

?
3

Vb,1
(26)

“ n sE2

?
3

Vb,1

Vb,2

Vb,2
`

sZsc

n
sI2

?
3

Vb,1
(27)

“ nsv2
Vb,2

Vb,1
`

szsc
n

si2
Vb,1

Vb,2
(28)

si1 “ sI1

?
3Vb,1

Ab
(29)

“ nsY0 sE2

?
3Vb,1

Ab

Vb,2

Vb,2

Vb,1

Vb,1
`

1

n
p1 ` sY0 sZscqsI2

?
3Vb,1

Ab

Vb,2

Vb,2
(30)

“ nsy0sv2
Vb,2

Vb,1
`

1

n
p1 ` sy0szscqsi2

Vb,1

Vb,2
(31)
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If the base voltages are chosen such that their ratio is equal to the trans-
former ratio, that is

Vb,1

Vb,2
“ n (32)

the per-unit transformer equations (28)–(31) simplify to

sv1 “ sv2 ` szscsi2 (33)

si1 “ sy0sv2 ` p1 ` sy0szscqsi2 (34)

Accordingly, the transformer is described by the following system of linear
equations (i.e., ABCD parameters)

„

sv1
si1

ȷ

“

„

1 szsc
sy0 1 ` sy0szsc

ȷ „

sv2
si2

ȷ

(35)

This corresponds to the equivalent circuit shown in Fig. 2.

si1

sy0sv1

si2

sv2

szsc

Figure 2: Equivalent circuit of a transformer in relative units when
Vb,1

Vb,2
“ n.

If (32) is not satisfied, that is

Vb,1

Vb,2
‰ n (36)

we define the per-unit transformer ratio m as

m “ n

ˆ

Vb,1

Vb,2

˙´1

. (37)

The transformer equations (35) become

„

sv1
si1

ȷ

“

„

m 1
msz1

sc

msy1
0

1
mp1 ` sy1

0sz1
scq

ȷ „

sv2
si2

ȷ

(38)
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si1

p1 ´ mq 1
sz1
sc

sy1
0sv1 mpm ´ 1q 1

sz1
sc

si2

sv2

1
msz1

sc

(a) Referred to the primary side.

si1

1´m
m2

1
sz2
sc

sy2
0sv1

m´1
m

1
sz2
sc

si2

sv2

msz2
sc

(b) Referred to the secondary side.

Figure 3: Per-unit equivalent circuit of a transformer when
Vb,1

Vb,2
‰ n.

where sz1
sc and sy1

0 are the per-unit values of sZsc “ sZ 1
sc and sY0 “ sY 1

0 referred
to the primary side. This yields the per-unit equivalent circuit shown in
Fig. 3a. Analogously, let sz2

sc and sy2
0 be the per-unit values of sZsc “ sZ2

sc and
sY0 “ sY 2

0 referred to the secondary side. Then, the corresponding per-unit
equivalent circuit is shown in Fig. 3b. This can be easily derived by knowing
that sZ2

sc “ 1
n2

sZ 1
sc.

Typically, the following quantities are specified in transformer data sheets:
the short-circuit voltage Vsc,% (in % of the nominal voltage), the winding
losses Psc,% (in % of the nominal power), the core losses P0,% (in % of the
nominal power), and the zero-load current I0,% (in % of the nominal cur-
rent). Suppose that the base power and voltages are chosen equal to the
nominal power and voltages of the transformer (i.e., Ab “ An, Vb,1 “ Vn,1,
Vb,2 “ Vn,2). Then, the parameters of the per-unit equivalent circuit can be
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computed as follows

zsc “ |szsc| “ Zsc
An

V 2
n,1

“

Vn,1?
3

Vsc,%

100

In,1

An

V 2
n,1

“
Vsc,%

100
(39)

rsc “ Rsc
An

V 2
n,1

“
An

Psc,%

100

3I2n,1

An

V 2
n,1

“
Psc,%

100
(40)

y0 “ |sy0| “ Y0
V 2
n,1

An
“

In,1
I0,%
100

Vn,1?
3

V 2
n,1

An
“

I0,%
100

(41)

g0 “ G0

V 2
n,1

An
“

An
P0,%

100

V 2
n,1

V 2
n,1

An
“

P0,%

100
(42)

In the above equations, all parameters are referred to the primary side, but
the results are the same if they are referred to the secondary side. The
reactance xsc and the susceptance b0 are obtained as follows

xsc “
a

z2sc ´ r2sc (43)

b0 “

b

y20 ´ g20 (44)

In practice, rsc and sy0 are often negligible (i.e., szsc “ jxsc and sy0 “ 0).

2.6 Per-Unit Analysis

Consider a power system with transformers, whose transformation ratios are
fixed (i.e., there are no tap-changing transformers). In general, such a system
includes subsystems at different voltage levels. The following procedure
allows to analyze such systems in a simple manner

1. Fix a unique base power Ab for the entire system, and individual base
voltages Vb,k for all the subsystem k, such that condition (32) is satis-
fied for as many as possible transformers. From these, the correspond-
ing base impedances Zb,k (or base admittances Yb,k) can be computed.

2. Derive the per-unit equivalent circuits of all electrical components in
the power systems (e.g., generators, transformers, lines, and loads),
and compose the per-unit model of the entire power system.

3. Formulate the system of equations describing the per-unit model, and
solve them to obtain the desired unknowns in relative units.

4. Transform the results from relative to absolute units.
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3 Exercises

3.1 Linear Feeder

Consider the linear feeder shown in Fig. 4, which consists of a synchronous
machine (SM), two transformers (TF1, TF2), a transmission line (TL), and a
load (L). The electrical parameters of these components are listed in Tab. 1.

TLTF1 TF2 LSM

12 1 2

Figure 4: Schematic of the linear feeder.

Table 1: Electrical parameters of the components forming the linear feeder.

Component Parameters

SM An=50 MVA, Vn=12 kV, xSM=1.1 pu ( sZSM “ jXSM)

TF1 An=60 MVA, Vn,1=220 kV, Vn,2=10 kV, Vsc,%=10%

TL XTL= 65 Ω ( sZTL “ jXTL)

TF2 An=30 MVA, Vn,1=220 kV, Vn,2=20 kV, Vsc,%=10%

L PL=24 MW, QL=15 MVar, VL=19 kV

Q1/ Compute the voltage magnitudes on the primary sides of the two
transformers and at the internal bus of the synchronous machine.

[A1]
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3.2 Parallel Transformers

Consider two transformers (TF1, TF2) connected in parallel as shown in
Fig. 5, whose primary sides are connected to a medium-voltage distribution
grid (G). The electrical parameters of the transformers are listed in Tab. 2.

TF1

TF2

Grid
21

1 2

Figure 5: Short-circuit analysis of two parallel transformers.

Table 2: Electrical parameters of the two-transformer setup.

Component Parameters

G Ssc=348 MVA, Vn=20 kV ( sZG “ jXG)

TF1 An=1000 kVA, Vn,1=20 kV, Vn,2=0.4 kV,

Vsc,%=5%, cosϕsc=0.22

TF2 An=400 kVA, Vn,1=20 kV, Vn,2=0.4 kV,

Vsc,%=5%, cosϕsc=0.22

Q2/ Compute the magnitude of the total short-circuit current on the
secondary side of the transformers.

[A2]
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